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Disease-specific eQTL screening reveals an anti-fibrotic
effect of AGXT2 in non-alcoholic fatty liver disease
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Highlights
devised a new analytic method to
identify causal genes. Among the
� Our ‘response-eQTL’ approach aimed to discover novel SNP-gene
pairs that only function in NAFLD.

� NAFLD-specific repression of AGXT2 was prominent in rs2291702:CC
carriers.

� Lower AGXT2 expression was associated with worse histological and
metabolic features in rs2291702:CC carriers.

� The reduction of AGXT2 mimicked human NAFLD features in mice,
whereas overexpression rescued them.

� The reduced AGXT2 caused increased cell death due to ER stress
activation in HepG2 cells.
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Disease-specific eQTL screening reveals an anti-fibrotic effect of
AGXT2 in non-alcoholic fatty liver disease
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Background & Aims: Non-alcoholic fatty liver disease (NAFLD) diet-induced liver fibrosis in mice, while overexpression of

poses an increasing clinical burden. Genome-wide association
studies have revealed a limited contribution of genomic variants
to the disease, requiring alternative but robust approaches to
identify disease-associated variants and genes. We carried out a
disease-specific expression quantitative trait loci (eQTL) screen
to identify novel genetic factors that specifically act on NAFLD
progression on the basis of genotype.
Methods: We recruited 125 Korean patients (83 with biopsy-
proven NAFLD and 42 without NAFLD) and performed eQTL
analyses using 21,272 transcripts and 3,234,941 genotyped and
imputed single nucleotide polymorphisms. We then selected
eQTLs that were detected only in the NAFLD group, but not in the
control group (i.e., NAFLD-eQTLs). An additional cohort of 162
Korean individuals with NAFLD was used for replication. The
function of the selected eQTL toward NAFLD development was
validated using HepG2, primary hepatocytes and NAFLD mouse
models.
Results: The NAFLD-specific eQTL screening yielded 242 loci.
Among them, AGXT2, encoding alanine-glyoxylate aminotrans-
ferase 2, displayed decreased expression in patients with NAFLD
homozygous for the non-reference allele of rs2291702, compared
to no-NAFLD individuals with the same genotype (p = 4.79 ×
10-6). This change was replicated in an additional 162 in-

dividuals, yielding a combined p value of 8.05 × 10-8 from a total
of 245 patients with NAFLD and 42 controls. Knockdown of
AGXT2 induced palmitate-overloaded hepatocyte death by
increasing endoplasmic reticulum stress, and exacerbated NAFLD
words: NAFLD; NASH; eQTL; genetic variants; AGXT2.
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AGXT2 attenuated liver fibrosis and steatosis.
Conclusions: We identified a new molecular role for AGXT2 in
NAFLD. Our overall approach will serve as an efficient tool for
uncovering novel genetic factors that contribute to liver steatosis
and fibrosis in patients with NAFLD.
Lay summary: Elucidating causal genes for non-alcoholic fatty
liver disease (NAFLD) has been challenging due to limited tissue
availability and the polygenic nature of the disease. Using liver
and blood samples from 125 Korean individuals (83 with NAFLD
and 42 without NAFLD), we devised a new analytic method to
identify causal genes. Among the candidates, we found that
AGXT2-rs2291702 protects against liver fibrosis in a genotype-
dependent manner with the potential for therapeutic in-
terventions. Our approach enables the discovery of causal genes
that act on the basis of genotype.
© 2021 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.
Introduction
Non-alcoholic fatty liver disease (NAFLD) is a growing burden
that affects approximately a quarter of the world’s population
and contributes to liver-related morbidity.1,2 Defined as a con-
dition in which excess liver fat exists in the absence of secondary
causes of lipid accumulation or clinically significant alcohol
intake, NAFLD includes a spectrum of liver diseases ranging from
non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis
(NASH).1,3,4 Due to unmet needs in the prediction and early
detection of NAFLD, there have been continuous efforts at clar-
ifying its pathomechanism to facilitate the identification of novel
therapeutic targets and biomarkers. However, no pharmaco-
therapy has yet been approved for NAFLD.5,6

Genome-wide association studies (GWAS) have revealed loci
that confer risk for NAFLD.1,4,7,8 However, these signals demon-
strate modest effect sizes and account for only a minor fraction of
the overall heritability of NAFLD, which is estimated to range at
2021 vol. - j 1–10
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Table 1. Summary statistics of the participants (n = 125).

No-NAFLD (n = 42) NAFLD (n = 83) p value

Age, years 56.7 (12.3) 53.3 (14.1) 0.19
Male, n (%) 25 (59.5) 38 (45.8) 0.15
BMI, kg/m2 24.0 (3.4) 28.1 (4.0) 1.21 × 10-7

Fibrosis stage (0-4) 0.26 (0.5) 1.66 (1.0) 4.45 × 10-19

Significant fibrosis (>−2) (%) 1 (2.4) 40 (48.2) 2.56 × 10-7

NAFLD activity score 0.43 (0.6) 4.65 (1.3) 3.60 × 10-49

SBP, mmHg 131.0 (16.5) 130.9 (18.5) 0.98
DBP, mmHg 79.4 (11.2) 79.9 (12.7) 0.84
HDL-cholesterol 46.4 (10.4) 44.7 (13.0) 0.45
Triglycerides, mg/dl 123.7 (54.8) 171.0 (88.0) 3.72 × 10-4

AST, IU/L 29.9 (18.7) 67.5 (72.1) 1.91 × 10-5

ALT, IU/L 30.3 (24.8) 80.5 (76.0) 2.51 × 10-7

GGT, IU/L 49.4 (53.8) 66.7 (49.0) 8.72 × 10-2

Albumin, g/dl 4.1 (0.3) 4.1 (0.3) 0.44
Platelet, ×109/L 228.7 (50.7) 224.4 (64.0) 0.68
HOMA-IR 2.7 (1.1) 6.2 (4.8) 9.11 × 10-9

Adipo-IR 5.8 (4.5) 13.8 (11.4) 1.77 × 10-7

Diabetes, n (%) 9 (21.4) 41 (49.4) 2.57 × 10-3

Hypertension, n (%) 16 (38.1) 31 (37.3) 0.94

Values are given as mean (SD). p values are from independent t tests and v2 tests
comparing between no-NAFLD and NAFLD groups.
Adipo-IR, adipose insulin resistance index; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; DBP, diastolic blood pressure; GGT, gamma glutamyl-
transferase; HOMA-IR, homeostasis model assessment of insulin resistance; NAFLD,
non-alcoholic fatty liver disease.
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between 22–50%.4,9 For complex traits, the development of a
polygenic risk score (PRS) has led to promising results in risk
prediction.7 However, PRS evaluation of NAFLD has not yet
generated robust results.10,11

Mapping of expression quantitative trait loci (eQTLs) enables
the identification of genetic variants that are associated with
gene expression changes.12,13 eQTL analysis has the advantage of
providing interpretable molecular links between genetic variants
and traits of interest.14,15 These links also enable a substantial
increase in statistical power, such that thousands of eQTLs can be
detected even with a sample of just ~100 individuals.14,16

Alanine-glyoxylate aminotransferase 2 (AGXT2) is a mito-
chondrial aminotransferase, possessing multiple enzymatic ac-
tivities on a wide array of substrates, including asymmetric
dimethylarginine (ADMA) and 3-amino-isobutyrate (BAIB), and
produces diverse metabolites including dimethylguanidino
valeric acid (DMGV).17 Knockout mouse and human-based
studies have implicated AGXT2 in endothelial dysfunction, hy-
pertension, and chronic heart failure, as ADMA is a potent in-
hibitor of nitric oxide synthase (NOS).18 GWAS of BAIB and DMGV
levels in urine and serum indicated a strong association with
AGXT2 variants, highlighting its central role in regulating the
levels of these molecules.19–21 The gene is specifically expressed
in the kidney and liver, and associated eQTLs have been identi-
fied in the liver tissues.22 However, the molecular basis of its
function in the liver remains elusive. Moreover, its pathophysi-
ological role beyond the known enzymatic activity has not yet
been clarified.

To circumvent existing technical limitations in understanding
NAFLD, we performed eQTL mapping to identify genetic variants
and their associated genes that confer susceptibility to NAFLD by
collecting histologically confirmed liver tissue transcriptome and
genotype data from 125 Korean individuals. We then developed
a pipeline to select gene-eQTL pairs that are specifically active
under the diseased state (hereafter referred to as “NAFLD-
eQTLs”) and pinpointed a single nucleotide polymorphism (SNP)
in the AGXT2 locus. With these efforts, we demonstrated that
altered AGXT2 expression might modulate the progression of
liver fibrosis via endoplasmic reticulum stress-mediated hepa-
tocellular death. Overall, our results highlight a new approach for
evaluating and selecting NAFLD-eQTLs, which can lead to the
identification of novel therapeutic targets for NAFLD in an
individual-specific manner.

Materials and methods
Patients
This study was approved by the institutional review board of
Seoul Metropolitan Government Boramae Medical Center. We
constructed a prospective cohort from the ongoing Boramae
NAFLD registry (NCT 02206841) as previously described.23 See
the supplementary methods for eligibility and diagnostic criteria
used in the study. Participants of both discovery (n = 125) and
replication (n = 162) cohorts consisted of Korean individuals
(Fig. S1), aged 19–80, who visited Seoul Metropolitan Govern-
ment Boramae Medical Center. All participants were informed of
the study protocol and provided written and signed consent.
NAFLD activity scoring and fibrosis staging were performed
following the Kleiner classification, and categorized into no-
NAFLD, NAFL, and NASH (Table 1, Table S1 and S2).24 In the
subsequent analyses, we considered no-NAFLD as control and
NAFL and NASH as the NAFLD group.
2 Journal of Hepatology
Transcriptome and genome data processing
Total RNA isolated from the liver was used for RNA sequencing
on a HiSeq2500 platform. Reads were mapped and quantified
with the human genome (hg19/GRCh37) based on GENCODE v19.
Differentially expressed genes (DEGs) were called using the
DESeq2 packages25 with correction for sample batches. Genes
within certain criteria were used in eQTL analysis (see
supplementary methods).

DNA was acquired from blood and genotyped using an Illu-
mina Infinium OmniExpress-24 kit or Omni2.5-8 kit. Genotype
data were processed with exclusion criteria, matched with RNA-
seq data and imputed using 1000 Genome Project Phase 3
haplotypes. After a further filtering process, genotyped and
imputed calls were used in eQTL analysis (see supplementary
methods).

Cis-eQTL analysis
Genotype and gene expression data (21,272 genes and 3,234,941
genotyped and imputed SNPs) available from the 125 individuals
were integrated for eQTL mapping using MatrixEQTL (version
2.2),26 accounting for age and sex (or BMI and homeostatic
model assessment of insulin resistance [HOMA-IR]). MatrixEQTL
performed a linear regression on the transformed residuals with
the corresponding imputed genotypes under the additive model.
An eQTL within 1 Mb of a gene transcription start site (TSS) was
considered a cis-eQTL. False discovery rate (FDR) was used to
adjust for multiple testing.

Selecting NAFLD-specific eQTLs (NAFLD-eQTLs)
To choose NAFLD-eQTLs, we divided samples into no-NAFLD
(n = 42) and NAFLD (n = 83) groups as described above and
performed cis-eQTL calling separately. Among the eQTLs from
the NAFLD group, calls that were also found in the no-NAFLD
group, with FDR-adjusted p <0.05 excluded. To define NAFLD-
specific loci, we selected the most significant eSNP per eGene,
then kept only eQTLs with absolute b coefficient >0.5 in NAFLD
2021 vol. - j 1–10



and absolute b fold change (FC) between NAFLD and no-NAFLD
>5. Finally, NAFLD-specific eGenes that overlapped with GTEx
liver eGenes were excluded. GTEx participants free of NAFLD
signatures (n = 79) were used. RNA-seq and genotyping data
from GTEx release v7 (https://gtexportal.org) were downloaded
from the Database of Genotypes and Phenotypes (dbGaP) under
accession phs000424.v7.p2.27

Agxt2 overexpression and knockdown in mouse model
Male C57BL/J mice were purchased from Japan SLC (Shizuoka,
Japan). Six-week-old mice were fed for 3 weeks, either a normal
chow-diet for a normal control model or a choline-deficient, L-
amino acid-defined, high-fat diet (CDAHFD, Research Diets, New
Brunswick, NJ) for a NAFLD model. Then, mice were injected with
adenoviruses containing short-hairpin RNA (shRNA) against Agxt2
or mock, or adenoviruses expressing Agxt2-FLAG or GFP for
knockdown and overexpression experiments, respectively. All
procedureswereperformedunder the standardprotocols approved
by the Committee on Animal Investigations of Yonsei University.

Results
Analysis of eQTLs
For transcriptome and genome-wide array analyses, liver biopsy
and blood samples were acquired from 125 Korean individuals
with varying metabolic and histological status. Using standard-
ized pathological scores, we divided all samples into no-NAFLD
(n = 42) and NAFLD (n = 83, including NAFL and NASH in-
dividuals) groups for eQTL analysis (Fig. 1A and Table 1 and S1).
After quality assessment of the genotype and transcriptome data,
21,272 transcripts and 3,234,941 SNPs were subject to cis-eQTL
(i.e., SNP-gene pair within 1 Mb of gene TSS) mapping using an
additive linear model. We identified 3,882 genes with cis-eQTLs
at an FDR <−5% (eGenes, Table S3), and 242,691 significant SNP-
gene pairs from the set of 125 samples (“Liver-eQTLs”). We
compared our liver eGenes to those from the GTEx database and
found 40.1% of our eGenes (1,558/3,882) overlapped with GTEx
liver eGenes, which was the largest proportion of overlap across
all 48 GTEx tissues tested (Fig. S2A). Among the eQTL SNPs
(eSNPs), 23.0% acted on multiple genes. As sample size may serve
as a confounding factor for eQTL detection sensitivity, we
compared our result to GTEx sets in terms of the correlation
between sample numbers and eGene numbers. Our dataset fell
within the range of GTEx correlations, suggesting that our data
processing and eQTL calling were well-performed (Pearson’s
correlation R = 0.94; p = 1.55 × 10-24; Fig. S2B). In addition, we
detected 2,577 significant trans-eQTLs at FDR <−5%, of which 646
(25.1%) were also eQTLs for nearby genes. Among the trans-
eQTLs, 30.0% predicted the expression of multiple non-local
genes. We limited our subsequent analyses on cis-eQTLs as
they have stronger and more direct implications on the regula-
tion of target gene expression.

Calling NAFLD-eQTLs
Under the hypothesis that cis-eQTLs may possess different activ-
ities under altered physiological status, such as NAFLD, we called
eQTLs that are significantly associated in patients with NAFLD but
not in the no-NAFLD group (i.e., NAFLD-eQTLs). Using the same
sets of SNPs and genes as for the liver-eQTL calling as described
above, 2,394 eGenes and 108,782 cis-eQTLs were detected spe-
cifically in the NAFLD group (Fig. 1B-1C). In comparison, 484
eGenes and 8,181 cis-eQTLs were detected as specific to the no-
Journal of Hepatology
NAFLD group. Like the liver-eQTLs, NAFLD-eQTLs clustered
throughout the whole genome (Fig. S3). Both eQTL sets showed
high enrichment of eSNPs in gene bodies and proximity to the
gene starts and ends (Fig. S4A). Relative to intergenic regions, we
also detected enrichments in untranslated regions, introns, and
non-coding RNAs, which are putative functional regions (Fig. S4B).
We additionally performed a genome-wide functional enrichment
analysis of liver-eQTL and NAFLD-eQTL sets using GREGOR28 and
observed that eSNPs were significantly enriched in known tran-
scription factor binding and histone modification sites (Fig. S4C
and S4D). Enrichment in these regulatory regions provides
further evidence that the eSNPs are functionally relevant to gene
expression and regulation in the liver. The numbers of tissues that
expressed our eGenes were comparable to those for GTEx liver
eGenes (Fig. S4E). And in the liver, our eGenes displayed higher
expression than non-eGenes (p <2.2×10-16, Welch’s t-test;
Fig. S4F), suggesting a strong functional relevance. After additional
filtering processes described in Fig. 1B and C, 242 NAFLD-eQTLs
that alter expression in the NAFLD group but not in the no-
NAFLD group, were selected for further analyses (Fig. 1B-1E and
Table S4).

AGXT2 expression is regulated by rs2291702 in NAFLD
Among the 242 NAFLD-eQTLs, we sought to identify loci that are
biologically relevant and may contribute to NAFLD pathogenesis.
We focused on the AGXT2 locus as it is the second strongest
signal after a long non-coding RNA (RP11-469A15.2) and it is
exclusively expressed in the liver and kidney. One of the eSNPs,
rs2291702, forms a significant cis-eQTL in the NAFLD group
(p = 7.21 × 10-9), but not in no-NAFLD (p = 0.38) or GTEx liver
(p = 0.31) sets (Fig. 2A). This significance persisted after adjusting
for BMI and HOMA-IR in addition to age and sex (Fig. S5).
Furthermore, rs2291702 also showed a clear association
(p = 3.32 × 10-5) between its genotypes and AGXT2 expression
level in an additional Korean cohort (n = 162; Fig. 2B and
Table S2). Therefore, combining this independent cohort with
our cohorts (n = 287) yielded stronger evidence that the eSNP
functions in the NAFLD status (p = 3.69 × 10-12; Fig. S6A and
S6B). As a result, the difference in AGTX2 expression between
NAFLD and no-NAFLD (P = 3.47 × 10-6) was largely attributed to
CC carriers (p = 4.79 × 10-6) and not to non-CC carriers (p = 0.16;
Fig. 2C). Immunohistochemistry on human liver biopsy samples
confirmed that the protein expression pattern of AGXT2 is
consistent with its gene expression pattern, which is dependent
on the disease state and rs2291702 genotype (Fig. 2D and S7).
The top 8 AGXT2-eSNPs lie in a linkage disequilibrium (LD) block
that spans ~4.7 kb in the 4–7th introns of the gene (Fig. 2E), and
these SNPs show variable allele frequencies (AF) across different
populations. In the 1000 Genomes database, the reference T
allele of rs2291702 predominates over the alternative C allele in
African populations (mean AF = 0.802), and has a frequency that
is roughly half in European populations (mean AF = 0.511),
whereas it is minor in East Asians and Koreans (AF = 0.327 and
0.330, respectively; Fig. 2F). This observation implies a potential
population-specific role of these SNPs along with differential
susceptibility to the AGXT2-dependent NAFLD pathway.

Role of AGXT2 in NAFLD progression
AGXT2 encodes a mitochondrial alanine-glyoxylate aminotrans-
ferase, which is responsible for systemic regulation of metabo-
lites such as asymmetrical and symmetrical dimethylarginine
2021 vol. - j 1–10 3
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(ADMA, SDMA), and BAIB.19–21 It is enriched in the liver and
kidney (Fig. 3A), and within the liver, it is mainly expressed in
hepatocytes, as evidenced by single-cell RNA-seq analysis of the
human liver (Fig. 3B)29 and a western blot in HepG2 cells
(Fig. 3C). In comparison, AGXT2 is expressed at low levels in LX-2,
a human hepatic stellate cell line (Fig. 3C). AGXT2 expression is
significantly correlated with pathological and clinical features
such as the degree of steatosis, ballooning, fibrosis, and lobular
inflammation, and the levels of hyaluronic acid (HA), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
HOMA-IR (Fig. 3D, 3E and S8). As expected, this effect was more
evident in rs2291702:CC carriers, reflected by higher R2 values
than those of non-CC carriers, whereas rs2291702:non-CC car-
riers displayed no significant correlations between the histo-
logical severity of NAFLD and AGXT2 expression (Fig. 3E, Table S5
4 Journal of Hepatology
and S6). Therefore, it is plausible to postulate that AGXT2-eSNPs
function as causative variants in NAFLD, and the alteration of
AGXT2 expression by the rs2291702 genotype modifies NAFLD
pathogenesis.

Despite the growing evidence that AGXT2 and its substrates
may play an important role in the pathogenesis of cardiovascular
and metabolic syndromes,17,18 the exact role of AGXT2 in NAFLD
is currently unclear. Therefore, we investigated whether altering
expression of the gene will allow us to elucidate its function in
regulating NAFLD progression. As the gene was downregulated
in the NAFLD group (Fig. 2), we first tested whether the reduc-
tion of AGXT2 may contribute to NAFLD development. Agxt2
knockdown shRNA was injected into 4 nine-week-old mice on a
normal diet. Seven days after the injection, histological analysis
revealed that Agxt2-knockdown mouse livers featured an
2021 vol. - j 1–10
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increase in collagen deposition (Fig. 4A and S9A). We also
observed an increase in serum AST/ALT levels and hepatic tran-
script levels of fibrogenesis (Col1a1 and aSMA), inflammation
(Tnfa, Il-1b and Cd36), and adipogenesis (Adrp and Acaca),
reflecting the NAFLD status (Fig. 4B and S10A-S10D).

Next, we overexpressed Agxt2 in 4 mice on CDAHFD, a widely-
used NASH-fibrosis animal model.30 Whereas the Agxt2- or GFP-
injected mice were comparable in terms of fat accumulation
(Fig. 4C), Masson’s trichrome staining revealed the reduction of
collagen deposition with the increased Agxt2 dosage (Fig. 4C and
S9B). The mice expressing Agxt2 also displayed a decrease in
serum AST/ALT levels and hepatic transcript levels of fibro-
genesis, inflammation, and lipogenesis (Fig. 4D and S10E-S10H),
indicating a protective role of AGXT2 in NAFLD progression.
Moreover, Agxt2-overexpressed mice demonstrated a significant
reduction in serum ADMA level, one of the main substrates of
AGXT2 (Fig. 4D). Taken together, the knockdown and over-
expression results suggest that Agxt2 ameliorates fibrogenesis in
the NAFLD mouse model, but show less pronounced effects on
lipid accumulation and the degree of steatosis in the liver. In
conclusion, AGXT2 protects from NAFLD progression by coun-
terbalancing the fibrogenesis process.
Alteration of the transcriptome in Agxt2 knockdown mice
Next, we investigated whether the reduction of Agxt2 can
genetically mimic human NAFLD features. We obtained liver
samples from Agxt2 knockdown (n = 2) and control (n = 2) mice,
Journal of Hepatology
profiled transcriptional alteration by Agxt2 depletion, and
compared them with our human NAFLD transcriptomes
(Fig. S11A). Of note, these mice were on a normal diet. We found
a significant enrichment in the number of overlapped DEGs be-
tween human patients with NAFLD and Agxt2 knockdown mice
(p = 3.78 × 10-3 for 163 concordantly regulated genes between
human and mouse and p = 1.0 for 41 discordant genes; Monte-
Carlo simulation), implying that the Agxt2 knockdown mouse
model harbors similar physiological features to human NAFLD
status. Next, we performed gene ontology analyses to elucidate
the functional basis of these DEGs. Both DEG sets exhibited
NAFLD-related terms in common, but enrichments in the
concordant genes more prominently featured metabolic func-
tions (e.g., amino acid and lipid metabolic processes) (Fig. S11B).
This supports that mouse transcriptomic changes resulting from
the reduction of Agxt2 resemble those observed in patients with
NAFLD and metabolic abnormalities.
AGXT2 knockdown induces ER stress and cell death
Based on the protective effects of Agxt2 against lipotoxicity of
hepatocytes (Figs. 4 and S10), we sought to elucidate in vitro
effects of AGXT2 reduction (see supplementary method).
Knockdown of AGXT2 in the HepG2 cells (as demonstrated by
western blot; Fig. 3C) sensitized them to cell death after
palmitate treatment (p <0.005, ANOVA with the Tukey’s test;
Fig. 5A) and increased cellular levels of ER stress (GRP-78 and
CHOP) and apoptosis (cleaved Caspase-3 and PARP) markers, as
2021 vol. - j 1–10 5
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detected by Western blot (Figs. 5B and S9C). Meanwhile,
reduced expression of AGXT2 increased mitochondrial super-
oxide generation (p <0.01, ANOVA with Tukey’s test; Fig. 5C),
which was enhanced by the addition of palmitate. We also
observed reduced mitochondrial integrity and oxygen con-
sumption rate by the reduction of AGXT2 (Fig. S12A-S12C).
There were no differences in cell proliferation (Fig. S12D).
Similar patterns were observed in murine primary hepatocytes,
in which ER stress markers were increased by the addition of
palmitate at 300 lM (Figs. 5D and S9D). The expression was
somewhat reduced at 500 lM, reflecting our assumption that
alternative pathways may be activated due to high PA level. As
increased hepatic ER stress is known to cause cell death and
fibrogenesis,31 these results suggest that decreased AGXT2 ex-
acerbates liver fibrosis by increasing ER stress-mediated he-
patocyte death in NAFLD.
6 Journal of Hepatology
Discussion
To accommodate the complex and polygenic nature of NAFLD,
and to enhance the ability to identify genes underlying its
pathomechanism, we present a disease-specific eQTL (i.e.,
NAFLD-eQTL) mapping pipeline. Unlike conventional eQTL ap-
proaches, our pipeline enabled us to identify eQTLs and associ-
ated genes that are active in the NAFLD environment. We
confirmed that altered transcriptional activity depends on
rs2291702, which is located in AGXT2 and constitutes one of our
top NAFLD-eQTLs. Using both mouse and cell models, we vali-
dated a NAFLD-preventive effect from AGXT2. Transcriptional
changes of NAFLD-associated genes and pathways in Agxt2-
knockdown mice on a normal diet indicate that suppression of
Agxt2 phenocopies human NAFLD with respect to gene expres-
sion. Lastly, at the cellular level, we present evidence that the
reduction of AGXT2 causes ER stress and hepatic cell death.
2021 vol. - j 1–10
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A number of studies have attempted to map healthy liver-
eQTLs, revealing eQTLs that are active in normal physiological
status.22,32,33 Notably, a recent meta-analysis from 1,183 in-
dividuals detected that approximately 75% of all genes are
associated with cis-eQTLs, consistent with a GTEx study.27,34 In
contrast with previous eQTL approaches using liver tissues,32–36

our approach enables: (i) identification of eQTLs with disease
risk, (ii) ranking eQTLs by effect size in the diseased state relative
to the normal, and (iii) pinpointing individuals that harbor spe-
cific genotypes that are more or less susceptible to disease. For
example, our analysis demonstrated that rs2291702:CC carriers
display AGXT2 downregulation and are more prone to the
development and progression of NAFLD compared to others (i.e.,
CT/TT carriers). This feature does not necessarily select SNPs that
were also significant in GWAS, because we subdivided the cases
and controls and this concomitantly reduced power. Neverthe-
less, this feature might be utilized in selecting proper target in-
dividual groups when developing and prescribing molecular
targeted agents against NAFLD. A recent study demonstrated a
similar pattern of the MBOAT7 variant.37 They observed that
rs641738, a SNP near MBOAT7 with significance from GWAS,
confers the risk of liver fibrosis in a genotype-dependent
manner.37 This study and ours both highlight the functional
implication of genetic variants that are active in a certain phys-
iological condition. In addition, our approach illuminates the
Journal of Hepatology
power of using non-European cohorts to discover novel genetic
players, as the susceptible allele predominates only in East Asian
populations. It would be worthwhile to test whether the effect of
genotype on AGXT2 expression is valid in other ethnic cohorts.

We found that reduced Agxt2 induces phenotypical and
transcriptomic profiles similar to those of human NAFLD (Fig. 4),
with livers of Agxt2 knockdown mice displaying an increased
expression of fibrogenesis, inflammation, and adipogenesis
markers (Fig. 4B). Conversely, increasing Agxt2 in high-fat diet-
fed mice reversed the marker expression changes (Fig. 4D),
suggesting a protective effect of the gene on NAFLD. At the
cellular level, we observed that reducing AGXT2 induces an in-
crease in reactive oxygen species level and ER stress-mediated
cell death upon metabolic stress, which is a well-known cause
of liver fibrosis. This observation raises a question – how does
reduced AGXT2 contribute to ER stress and hepatic cell death?
Investigations on the physiological role of AGTX2 have mainly
focused on the cardiovascular system, as one of its main sub-
strates, ADMA, is the most potent endogenous NOS inhibitor.
Moreover, a knockout mouse model displayed cardiovascular
phenotypes.18 In light of such findings, we tested if altered ADMA
due to AGXT2 dysregulation may affect nitric oxide levels in the
liver. However, AGXT2 knockdown in HepG2 cells did not alter
nitric oxide status, as assayed by 3NT western blotting (data not
shown). Also, ADMA itself failed to worsen the ER stress induced
2021 vol. - j 1–10 7
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by PA treatment, implying other or additional substrates may be
engaged in this process. Another mechanism of AGXT2 patho-
genesis is through altering amino acid metabolism, as AGXT2
utilizes various amino acid metabolites as substrates or products.
Indeed, we observed that the levels of known substrates and
amino acids that are closely linked with the AGXT2 enzymatic
activity are altered by the reduction of AGXT2 (Fig. S13) in HepG2
cells. Although the causal relationship of amino acid dysregula-
tion with NAFLD remains to be clarified, this observation is
consistent with previous studies38,39 and offers a plausible
explanation for hepatic damage mediated by reduced AGXT2
levels. Lastly, the precise role of hepatic stellate cells in this
process also remains as an open question, although we have
observed similar changes of fibrosis and inflammation marker
expression upon AGXT2 knockdown or overexpression in LX-2
cells (Fig. S14).

We observed that AGXT2-eSNPs are functional in NAFLD.
Furthermore, we discovered that the SNPs possess transcrip-
tional regulatory activity of varying degrees when placed on a
8 Journal of Hepatology
luciferase reporter, and the effect can influence across the LD
block that they are located (Fig. S15). Nevertheless, precise mo-
lecular basis for AGXT2-eSNP’s function needs to be further
studied.

Despite the stringent filtering steps carried out in this study, it
would be necessary to increase the sample size to achieve suf-
ficient statistical power, and to systematically validate the
function of each eQTL under both normal and affected status.
Although our set of NAFLD-eQTLs possesses many previously
associated NAFLD genes (Table S7), repeating our approach at the
single-cell level would provide further insight into how cell type-
specific NAFLD-eQTLs behave and confer the risk of NAFLD.

Herein, we presented a proof-of-concept method in which a
disease-specific eQTL was selected and its function was validated
toward the identification of therapeutic targets, specifically
proposing AGXT2 as a novel druggable target against NAFLD.
Given that NAFLD is a polygenic trait and a substantial portion of
the NAFLD population is non-obese and probably considered to
harbor substantial genetic susceptibility, it is expected that
additional loci will be mapped with biological validation.
Therefore, as we increase sample size to boost statistical power,
it will become more feasible to find potent therapeutic targets
and prospects for clinical interventions in an individual-specific
manner. To date, therapeutic clinical trials have been unsuc-
cessful largely because they failed to consider the genetic het-
erogeneity of patients with NAFLD. In this respect, our approach
has substantial advantages for the NAFLD drug development
process through selective enrollment of a high-risk NAFLD
population carrying risk variants.
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